Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: covidwho-2124072

ABSTRACT

Co-infected hosts, individuals that carry more than one infectious agent at any one time, have been suggested to facilitate pathogen transmission, including the emergence of supershedding events. However, how the host immune response mediates the interactions between co-infecting pathogens and how these affect the dynamics of shedding remains largely unclear. We used laboratory experiments and a modeling approach to examine temporal changes in the shedding of the respiratory bacterium Bordetella bronchiseptica in rabbits with one or two gastrointestinal helminth species. Experimental data showed that rabbits co-infected with one or both helminths shed significantly more B. bronchiseptica, by direct contact with an agar petri dish, than rabbits with bacteria alone. Co-infected hosts generated supershedding events of higher intensity and more frequently than hosts with no helminths. To explain this variation in shedding an infection-immune model was developed and fitted to rabbits of each group. Simulations suggested that differences in the magnitude and duration of shedding could be explained by the effect of the two helminths on the relative contribution of neutrophils and specific IgA and IgG to B. bronchiseptica neutralization in the respiratory tract. However, the interactions between infection and immune response at the scale of analysis that we used could not capture the rapid variation in the intensity of shedding of every rabbit. We suggest that fast and local changes at the level of respiratory tissue probably played a more important role. This study indicates that co-infected hosts are important source of variation in shedding, and provides a quantitative explanation into the role of helminths to the dynamics of respiratory bacterial infections.


Subject(s)
Bordetella Infections , Bordetella bronchiseptica , Helminths , Respiratory Tract Infections , Animals , Rabbits , Bordetella Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory System
2.
Medicine (Baltimore) ; 100(51): e28244, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1593779

ABSTRACT

RATIONALE: Bordetella bronchiseptica is a common cause of upper respiratory tract infections in domesticated dogs and cats and a rare zoonotic pathogen in immunocompromised humans. With increasing numbers of people acquiring pets and spending time with them in confined spaces due to COVID-19 lockdowns, it is important to be aware of adverse health consequences brought about by this interaction. We present a case of B bronchiseptica pneumonia in a patient with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and review key characteristics of an additional 30 cases of B bronchiseptica infections in 29 patients with HIV/AIDS that were identified by literature review. PATIENT CONCERNS: A 61-year-old male with HIV/AIDS who was not on antiretroviral therapy and had advanced immunosuppression with a CD4+ T-lymphocyte count of 3 cells/µL sought medical attention for multiple somatic issues including subjective fevers, shortness of breath, and intermittent chest pain. DIAGNOSIS: Computed tomography of the chest identified bilateral nodular opacities in the lower lobes with scattered areas of ground glass opacities. B bronchiseptica was identified in sputum culture by mass spectrometry followed by supplementary biochemical testing. INTERVENTIONS: Empiric broad-spectrum antibiotics were initiated and changed to levofloxacin after susceptibility testing was completed. OUTCOMES: The patient was discharged after symptomatic improvement with levofloxacin. LESSONS: Pneumonia with interstitial infiltrates in the setting of advanced CD4 lymphocyte depletion is the most common clinical syndrome caused by B bronchiseptica in patients with HIV/AIDS, and may be accompanied by sepsis. Advanced immune suppression, as well as chronic medical conditions, for example, alcoholism, diabetes, and renal failure that compromise host defenses are also commonly found in cases of B bronchiseptica infection in patients who do not have HIV infection. Reported animal contact among patients was not universal. Isolates were susceptible to aminoglycosides, carbapenems, fluoroquinolones, but typically resistant to most cephalosporins.


Subject(s)
Acquired Immunodeficiency Syndrome , Bordetella Infections , Bordetella bronchiseptica , HIV Infections , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/microbiology , Anti-Bacterial Agents/therapeutic use , Bordetella Infections/complications , Bordetella Infections/diagnosis , Bordetella Infections/drug therapy , HIV Infections/complications , HIV Infections/microbiology , Humans , Levofloxacin/therapeutic use , Male , Middle Aged
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1346498

ABSTRACT

Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.


Subject(s)
Bordetella Infections/immunology , Bordetella bronchiseptica/immunology , Eosinophils/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Microbiota/immunology , Animals , Humans , Th17 Cells/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL